101年初考-統計學大意 - 考試
By Freda
at 2014-01-05T13:01
at 2014-01-05T13:01
Table of Contents
[考題] 國考歷屆考題與考題觀念討論(書裡看到的選這個)請附上想法、出處
35:關於分層抽樣,下列敘述何者為真?
(A)可去除總變異 (B)可去除阻間變異 (C)可去除組內變異 (D)希望各層是母體的縮影
答案B
據我的了解分層抽樣是阻間變異大,組內變異小,並不會去除掉任何一個變異
所以我選D,請問哪裡有錯
36:假設連續隨機變數X和Y互為獨立,且各自具有以下機率密度函數
f(x)=e^(-x),x>0,及f(y)=2e^(-2y),y>0,令Z=min{X,Y},則下列何者為真?
(A)P(Z>1)=1-e^(-3) (B)E(Z)=3 (C)VAR(Z)=3 (D)E(Z^2)=2/9
答案D
請問如何算去判斷?
38:持續投擲1枚不公平的銅板直到至少有一次頭和一次尾出現方才罷手,假設每
次投擲為獨立且每次出現頭的機率為0.2,則需要投擲次數的平均數為何?
答案5.25
其實我算6.25=1/0.2+1/0.8
請問正確要怎樣算才得5.25
--
35:關於分層抽樣,下列敘述何者為真?
(A)可去除總變異 (B)可去除阻間變異 (C)可去除組內變異 (D)希望各層是母體的縮影
答案B
據我的了解分層抽樣是阻間變異大,組內變異小,並不會去除掉任何一個變異
所以我選D,請問哪裡有錯
36:假設連續隨機變數X和Y互為獨立,且各自具有以下機率密度函數
f(x)=e^(-x),x>0,及f(y)=2e^(-2y),y>0,令Z=min{X,Y},則下列何者為真?
(A)P(Z>1)=1-e^(-3) (B)E(Z)=3 (C)VAR(Z)=3 (D)E(Z^2)=2/9
答案D
請問如何算去判斷?
38:持續投擲1枚不公平的銅板直到至少有一次頭和一次尾出現方才罷手,假設每
次投擲為獨立且每次出現頭的機率為0.2,則需要投擲次數的平均數為何?
答案5.25
其實我算6.25=1/0.2+1/0.8
請問正確要怎樣算才得5.25
--
Tags:
考試
All Comments
By Regina
at 2014-01-06T23:24
at 2014-01-06T23:24
By Belly
at 2014-01-07T14:36
at 2014-01-07T14:36
By Vanessa
at 2014-01-07T18:39
at 2014-01-07T18:39
By Jacky
at 2014-01-11T23:15
at 2014-01-11T23:15
By Elizabeth
at 2014-01-13T22:55
at 2014-01-13T22:55
By Damian
at 2014-01-15T04:46
at 2014-01-15T04:46
By Ula
at 2014-01-16T04:49
at 2014-01-16T04:49
By Sandy
at 2014-01-16T07:20
at 2014-01-16T07:20
By Susan
at 2014-01-17T20:38
at 2014-01-17T20:38
By Agnes
at 2014-01-18T20:35
at 2014-01-18T20:35
By Emily
at 2014-01-22T15:54
at 2014-01-22T15:54
By Genevieve
at 2014-01-25T21:53
at 2014-01-25T21:53
By Damian
at 2014-01-27T21:31
at 2014-01-27T21:31
By Hazel
at 2014-02-01T18:10
at 2014-02-01T18:10
By Margaret
at 2014-02-02T15:34
at 2014-02-02T15:34
By Elvira
at 2014-02-03T12:01
at 2014-02-03T12:01
Related Posts
中醫或西醫的抉擇?
By Lucy
at 2014-01-05T12:56
at 2014-01-05T12:56
台灣哪些大學有後中醫或後西醫的?
By Bennie
at 2014-01-05T12:04
at 2014-01-05T12:04
一卡通公司跨大徵才!
By Isabella
at 2014-01-05T11:39
at 2014-01-05T11:39
想請問有關資訊處理的函授問題
By Dinah
at 2014-01-05T11:08
at 2014-01-05T11:08
關於法學大意範圍
By Bethany
at 2014-01-05T10:29
at 2014-01-05T10:29