101年初考-統計學大意 - 考試
By Tracy
at 2014-01-05T17:48
at 2014-01-05T17:48
Table of Contents
※ 引述《helenpei (狗狗)》之銘言:
[考題] 國考歷屆考題與考題觀念討論(書裡看到的選這個)請附上想法、出處
35:關於分層抽樣,下列敘述何者為真?
(A)可去除總變異 (B)可去除阻間變異 (C)可去除組內變異 (D)希望各層是母體的縮影
答案B
據我的了解分層抽樣是阻間變異大,組內變異小,並不會去除掉任何一個變異
所以我選D,請問哪裡有錯
36:假設連續隨機變數X和Y互為獨立,且各自具有以下機率密度函數
f(x)=e^(-x),x>0,及f(y)=2e^(-2y),y>0,令Z=min{X,Y},則下列何者為真?
(A)P(Z>1)=1-e^(-3) (B)E(Z)=3 (C)VAR(Z)=3 (D)E(Z^2)=2/9
答案D
請問如何算去判斷?
38:持續投擲1枚不公平的銅板直到至少有一次頭和一次尾出現方才罷手,假設每
次投擲為獨立且每次出現頭的機率為0.2,則需要投擲次數的平均數為何?
答案5.25
其實我算6.25=1/0.2+1/0.8
請問正確要怎樣算才得5.25
--
[考題] 國考歷屆考題與考題觀念討論(書裡看到的選這個)請附上想法、出處
35:關於分層抽樣,下列敘述何者為真?
(A)可去除總變異 (B)可去除阻間變異 (C)可去除組內變異 (D)希望各層是母體的縮影
答案B
據我的了解分層抽樣是阻間變異大,組內變異小,並不會去除掉任何一個變異
所以我選D,請問哪裡有錯
36:假設連續隨機變數X和Y互為獨立,且各自具有以下機率密度函數
f(x)=e^(-x),x>0,及f(y)=2e^(-2y),y>0,令Z=min{X,Y},則下列何者為真?
(A)P(Z>1)=1-e^(-3) (B)E(Z)=3 (C)VAR(Z)=3 (D)E(Z^2)=2/9
答案D
請問如何算去判斷?
38:持續投擲1枚不公平的銅板直到至少有一次頭和一次尾出現方才罷手,假設每
次投擲為獨立且每次出現頭的機率為0.2,則需要投擲次數的平均數為何?
答案5.25
其實我算6.25=1/0.2+1/0.8
請問正確要怎樣算才得5.25
--
Tags:
考試
All Comments
By Kristin
at 2014-01-10T06:33
at 2014-01-10T06:33
By Freda
at 2014-01-11T15:37
at 2014-01-11T15:37
By Charlotte
at 2014-01-13T02:15
at 2014-01-13T02:15
By Necoo
at 2014-01-14T19:00
at 2014-01-14T19:00
By Una
at 2014-01-16T19:07
at 2014-01-16T19:07
By Hedda
at 2014-01-21T00:51
at 2014-01-21T00:51
By Daniel
at 2014-01-25T03:24
at 2014-01-25T03:24
By Belly
at 2014-01-27T10:21
at 2014-01-27T10:21
By Joseph
at 2014-01-29T21:43
at 2014-01-29T21:43
By Ula
at 2014-01-30T18:39
at 2014-01-30T18:39
By Michael
at 2014-02-02T08:22
at 2014-02-02T08:22
By Jake
at 2014-02-06T14:09
at 2014-02-06T14:09
By Elma
at 2014-02-06T21:54
at 2014-02-06T21:54
By William
at 2014-02-10T08:59
at 2014-02-10T08:59
By Lauren
at 2014-02-14T17:12
at 2014-02-14T17:12
By Ophelia
at 2014-02-17T21:21
at 2014-02-17T21:21
Related Posts
長宏PMP培訓2014年度『春季班』開課情報
By Dorothy
at 2014-01-05T16:59
at 2014-01-05T16:59
請問刑法有沒有過失重傷罪?
By Eartha
at 2014-01-05T16:13
at 2014-01-05T16:13
By Skylar DavisLinda
at 2014-01-05T15:35
at 2014-01-05T15:35
預備犯共犯問題
By Tracy
at 2014-01-05T14:22
at 2014-01-05T14:22
請問已經全職2年了,是否繼續全職?
By Ula
at 2014-01-05T13:33
at 2014-01-05T13:33